SV Fukui Int. Conf. Mar. 26-27, 2013, Tsuruga,

Prospect of Nuclear Applications for Sustainable Development and Welfare

Sueo Machi FNCA Coordinator of Japan Fellow, Japan Atomic Energy Agency Former DDG-NA, IAEA

Talking Points

- 1. Industrial application of radiation processing
- 2. Nuclear techniques for sustainable agriculture
- 3. Radiation application for environmental protection
- A. Nuclear techniques for better healthcare
 Roles of IAEA for nuclear applications

Economic Scale of Nuclear Technology of Japan in 2005

Radiation/isotope is competitive with nuclear power generation

Industrial ApplicationUS\$ 21.9 BillionMedical ApplicationUS\$ 14.7 BillionAgricultural Application US\$ 2.7 Billion

Published by CAO

Total economic scale of radiation and isotope application of Japan in 2005: JY4.11trillion (US\$39.3Billion)

Industrial ApplicationJ¥ 2.295 Trillion: US\$ 21.9 BillionMedical ApplicationJ¥ 1.537 Trillion: US\$ 14.7 BillionAgricultural ApplicationJ¥ 0.279 Trillion: US\$ 2.7 Billion

The 1st IAEA Conference on "Large Radiation Source" was held in Poland in 1959

IAEA was established in 1957 being based on President Eisenhower's "Atoms for Peace" Speech

Industrial Applications of Nuclear Technology

- Radiation processing for value added products and environmental protection
 Nucleonic control system for efficient process
- Non-Destructive Testing

Radiation Processing Applications in Industry

- I. Polymer modification
- 2. Sterilization of medical supplies and food packaging
- 3. Food irradiation
- 4. Ion implantation for semi-conductor production
- 5. Environmental protection

Radiation Processing of Polymers

 Cross-linking Graft-polymerization Polymerization Degradation

Advantages:

- Room temperature processing
- No catalyst \rightarrow pure products
- Processing in solid state molded product
- High speed processing (EB)

Polymer Modification by Radiation

Crosslinking of rubber to control flow properties

Memory Effect by cross-linking

Automobile tires

Heat shrinkable tubes and sheets

<u>Commercially produced cross-linked or grafted</u> polymers by radiation processing – 1				
Products	Applications			
Cross-linked polyethylene and PVC	Wire insulation resistant to heat and chemicals, pipes for hot water of heating systems			
Cross-linked foamed polyethylene	Insulation, packing, floating materials			
Heat shrinkable tubes and sheets	Food packaging, wire insulation, protection of welding for corrosion			
Cross-linked rubber sheets	Automobile tires (high quality)			
AA grafted PE film	Battery separator			

10

<u>Commercially produced cross-linked or grafted</u> polymers by radiation processing – 2

Products	Applications
Cross-linked nylon	Automobile parts resistant to heat and chemicals
Super heat resistant SiC fiber	Metal and ceramic composites,
Vulcanized natural rubber latex	Fingerstall (Malaysia)
Cross-linked hydrogel	Wound dressing
Curing of paints/inks	Surface coating/printing
Grafted PE fiber	Deodorant

Electron Accelerator for Radiation

- Advantages:
- High processing speed and capacity
- No source replenishment required
- Short penetration range
- Number of electron accelerator:
- Worldwide:1400 for industry,1000 for research(IAEA)
- In Japan:248 for industry, 147 for research (2007)
- Major applications:
- Polymer processing
- Sterilization of medical supplies

Electron accelerator for cross-linking of wire Insulation (Nuclear Malaysia with JICA support)

Number of EB Processors in Japan (2007)

Application	Low Energy EB <300keV	Medium Energy EB <300keV~3MeV	High Energy EB <3MeV~10MeV	Total
Wire/Cable	1	53	1	55
Foamed plastics	3	12	0	15
Shrinkable materials	13	18	1	32
Tire	9	20	-0	29
Curing/Grafting	69	2	0	71
Flue Gas	0	7	0	7
Sterilization	5	2	9	16
Toll Service, Others	4	10	9	23
R & D	144	2	1	147
Total	248	126	21	395
Fukui Int. Con. March 26-27, 2013 S. Machi				

Production Line of Heat-shrinkable Sheets (USA)

Figure 67. Ten Self-shielded EB Units in One Factory

<A. Berejka, IAEA Document on EB Application (2008)>

Hydro-gel Wound Dressing

ADVANTAGES

1.Healing is faster2.Changing the dressing without pain3.Transparency

Treatment for 13 days

EB Curing Over-coat of Decorative Paper for Furniture and Flooring in Japan

- EB processing has following advantages over UV or thermal curing :
- Higher hardness and scratch resistance
- Higher chemical resistance
- Less energy consumption

Non-solvent process

Curing of Coating by Electron Beams for Saving Energy/Environmental Protection

Comparison of EB curing with thermal curing Total energy demand : EB Thermal 9,600 3,700,000 (kJ/hour) (27.3kJ/g to dry)Volatile organic compounds 12 0 (grams/m₂) Coating solids concentration 100 60 (%) Ref. A. Berejka, The RadTech Report, (Sept./Oct.2003)

Battery Separator Membrans by Radiation Grafting

AAc grafted PE film

Button Battery of Silver Oxide Type Production: 1 Billion/year in Japan

Polyethylene thin film (10µm) by radiation graftpolymerization of acrylic acid

Industrial Grafting Plant Using Electron Accelerator (Japan)

Efficient Sterilization by Radiation

Sterilization of:

- Medical supplies to avoid infectious disease

- Plastic (PET) bottles of drinks and food packages at high speed (new application in Japan)

By both Co-60 and electron accelerator

Sterilization of Medical Products Efficient Processing by Electron Accelerator

Energy: 5-10 MeV Capacity: 10-100kW

- High speed processing

- Larger capacity

No replenishment of radiation source

New Technology for Sterilization of Plastic (PET) Bottles of Drinks by Electron Accelerator (Japan)

Advantages

 In line sterilization for filling process
 No residual chemicals
 Running cost reduction by 10-25 %
 Compact systemless space

Accelerator 300 keV Capacity: 600 bottles of 500 ml per minute

Machi

Other Unique Radiation Applications

Color Change of Gem Stones: Thailand

Disinfect Anthrax in Mail: USA

Environmental Protection by Using Radiation Technology

Cleaning flue gases;

- Removing SO2 and NOx from power plant
- Removing dioxin from municipal waste incineration plant (R&D)
- Removing stinking gas of drying sewage sludge (Japan)
- Removing VOC (toluene, xylene) (R&D)
- Cleaning waste water from dying factory (Korea)

Environment Is Degraded by Acid Rain

Increasing Emission of SO₂

Damaged Forests by Acid Rain in East Europe

Innovative Technology for Cleaning Flue Gases by Electron Beams

Removal efficiency: SO₂ 90% Absorbed dose: 10~15hGy Temp: 65~70°C

EBFGT (Electron Beam Flue Gas Treatment) Industrial Plant in Poland

 Pomorzany thermal power station burning coal in Szczecin (north Poland)

Treatment Capacity: 270,000 m3/h

Industrial Electron Beam Flue Gas Treatment (EBFGT) Plant in Poland

EB Accelerator: 700 keVx375 mA 4 unit

Treatment Capacity: 270,000 m3/h from coal power plant of 100 MW

Control Room of EBFGT for Industrial Plant in Poland

 Ebara Co. installed industrial plant of flue gas treatment in Chengdu, China in 1997
 90 MWe, 300,000 m3/h flue gas
 SO2 removal 80%
 NOx removal 20%

Industrial Plant of Waste Water Treatment by Electron Beams (Korea) (2006)

Cleaning waste water from fabric dyeing factory in Tegu city

Capacity: 10,000m3/day

Electron accelerator: 1Mev, 500kW

Radiation for Sustainable Agriculture

- Mutation breeding for better crop varieties
- Sterile insect technique for protection of plants and animals
- Food irradiation for reduction of postharvest loss
- Bio-fertilizer increasing crop yields
- Plant growth promoter from natural polymers for yield increase

<u>3000</u> Better Varieties Developed by Radiation-Induced Mutation Breeding

<u>Higher yield</u>
<u>Disease resistant</u>
<u>Early maturity</u>
<u>Drought resistant</u>
<u>Dwarf</u>
<u>Salt resistant</u>

Barley of Early Maturity in High Land of Peru

Recent Success in Japan

Disease (brack spot) resistant mutant variety of pear to avoid excess use of pesticides for better economics and environment

New variety

Machi

Parent

FNCA Project on Mutation Breeding

Contributing to develop sustainable agriculture

Completed with success: Disease (Banchy

- Top virus) resistant banana Philippines
- Insect resistant orchid; Malaysia

Focusing on:

Rice: Environmentally friendly Varieties: High yield with low chemical input; tolerant with high temperature climate: Rice seeds were irradiated with ion beams by JAEA

New disease resistant rice variety (right): 15% yield increase: Vietnam;

> RCA NRM Myanmar Mar, 21, 2013 S. Machi S. Machi

Sterile Insect Technique (SIT) for Eradicate or Control Insect Pests

Stocking Irradiation facility of puppet puppet by Co-60

Release of sterilized flies by air

On the ground

IAEA Success Story of Eradication of Tsetse Flies

Tsetse flies transmit Nangana disease of live stock: Damaging livestock industry in Sub-Sahara region

勢多農林高 2009年6月9日 町

IAEA/FAO achieved to protect livestock industry in Zanzibar Island by eradication of tsetse flies (1996)

Production of Bio-fertilizer Inoculants by Radiation

Increasing plant yields
 (20-50%) by micro-organism,
 Rhizobium and Mycorrhiza
 Less expensive/environmentally
 friendly than chemical fertilizer

Soybeans with Rhizobium

Carrier of bio-fertilizer is sterilized by radiation to bring better QA/QC and longer shelf-life of inoculants : Commercial application in Indonesia, Malaysia, Philippines, Japan Challenge: Expansion of commercial application

> RCA NRM Myanmar Mar, 21, 2013 S. Machi S. Machi

Achievement and Challenges of the Project

I. Extension of Radiation Sterilization for Commercial Production

The most fruitful result of our project in this year is "The Philippines started to supply Bio-N biofertilizers made by irradiated carrier".

So far, the soil + charcoal is mixed as carrier and steam sterilized for three days at 1 hour each.

Samples of Bio N carrier submitted to PNRI for gamma irradiation

RCA NRM Myanmar Mar, 21, 2013 Bio N t Machi S. Machi

2013 Bio N boxes already subjected to gamma irradiation 42

Commercial Application of Bio-fertilizer **Produced by Radiation Sterilization** in Malaysia (Mycorrhiza/Rhizobium) and Philippines (Rhizobium)

Mycorrhiza: phosphate solubilizing microorganism

RCA NRM Myanmar Mar, 21, 2013 S. Machi S. Machi

Oligochitosan Plant Growth Promoter Produced by Radiation Degradation of Chitosan

Super Water Absorbent (SWA) for Soil Conditioner in Semiarid /Arid Region

- Hydrogel SWA is effectively produced from natural polymers, such as cassava starch by radiation cross-linking or radiation grafting
- 1 gram of the SWA absorbs 400 500 gram of water
- Soil mixed with small amount of SWA can retain longer the scarce rain or irrigated water

Field tests in Vietnam showed crop yield increase by10-30% by the use of SWA

1 g of SWA absorbs 400-500 g water

Yield Increase of Crops by SWA Soil Conditioner (Vietnam)

Crops S	NA kg/ha	Yield increase	
Corn	40	28.8 %	
Cabbage	40	15.4	
Peanuts	30	16.3	
Peanuts	40	21.1	
Cotton	30	31.1	
Grape	50	29.8	
Sugar can	e 60	19.8	
Cassava	60	22.8	

Field Test of SWA for Lily Plant : Vietnam

With SWA 12 weeks Without SWA

IAEA FAO Syno. Soil, 23-26 July, 2012 S.Machi

Food Irradiation Expanding Worldwide

-Sprout inhibition: Garlic, Potatoes, Onions -Disinfection: Spices, Shrimps Sausage, Beef, -Disinfestation: Citrus, Mangos, Papaya, Cucumber 500,000 tons/year

Irradiation of potatoes for sprout inhibition in Japan by Co-60 (8,000 ton/year): The world first food irradiator

Irradiated Strawberries for Better Preservation: Commercialized in USA

Irradiated Food Increasing

Permitted in 57 countries

180 gamma irradiators & a dozen EB accelerators

World total of irradiated foods

China : Garlic, Dried vegetables, etc. Vietnam : Frozen shrimps, etc. Japan : Potatoes USA : Spices, Ground meats, Fruits Ukraine: Wheat grain Brazil: Spices, Fruits South Africa : Spices Belgium : Spices, Frozen chicken Others: ca. 500,000 ton

146,000 ton 14,000 ton 8,000 ton 92,000 ton 70,000 ton 23,000 ton 18,000 ton 7,000 ton 7,000 ton

Cancer Affects Us All

* Chart courtesy of WHO

- Cancer killed 7.9 million people in 2007
- 72% of these deaths occurred in developing countries

Linear Accelerator (LINAC) External Beam Radiotherapy Machine

これは患者さんのセット死ッパの写真です6,27,2013 S. 治療中は、患者さんのみ治療室内に残り、技師さん達は治療室にいません。⁵³

Advanced Technology for Cancer Therapy by Heavy Ion Beam Facility in Japan (NIRS)

Carbon-12 Ion Beam Treatment of Cancer

World first facility of carbon ion treatment:

National Institute of Radiological Science, Japan

- Effective damage of cancer tumor (high LET)
- Selective irradiation on targeted tumor
- Much reduced side effect on healthy tissue
- Effective cancer: Lung, Prostate, Liver, Pancreas, Bone, Head-neck, Gullet
- Number of treated patients by NIRS: 7000 patients
- Challenge: reduction of cost
- 2nd facility; Nishiharima, 3rd; Gunma Univ. 600 p

Lung Cancer: One time irradiation of Carbon-12 ion

71years old Female(扁平上皮がん) by NIRS

Before treatment

After treatment

Early Diagnosis of Cancer by PET/CT

FNCA

Interpretation of PET images Compiling PET images with interpretation

Guide lines of operation and maintenance for cyclotron and chemical box; Publication of PET image ATLAS with 200 images, and the guide lines for operation and maintenance

Conclusion

- Radiation application in industry, agriculture and environmental protection will further develop to contribute for sustainable development in both developing and developed countries
- Radiation medicine effectively improve health care through nuclear medicine diagnosis and radiation treatment of cancer
- IAEA plays important roles for supporting MSs to develop nuclear applications
- FNCA is implementing 5 projects to develop nuclear applications in member countries

Thank you for your kind attention!

Annular Solar Eclipse:07:32 May 21, 2012 Tokyo

From National Observatory Home Page